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The flow field behind a constricted channel is studied numerically. A pulsating 
incoming flow with a non-vanishing mean is imposed at the entrance and the flow field 
is investigated for a wide range of Reynolds and Strouhal numbers (1500 > Re > 45, 
12 > St > 0.01). In most cases (except at the two ends of the Strouhal number regime 
or for Re < 90), propagating vortices are found downstream of the constriction with 
a wavy core flow between them. The size and number of coexisting vortices depend 
on St but less on Re. The strength and structure of the vortical regions depend on 
both Re and S t .  The formation of the vortices is discussed for the various S t  regimes 
and the characteristics of the vortical flow are described. 

1. Introduction 
The study of pulsating flows in channels has received increased attention in the 

past few years both in engineering and biofluid applications, e.g. Sobey (1982, 1985), 
Armaly et al. (1983), Pedley & Stephanoff (1985), Ralph (1986), Ralph & Pedley 
(1988, 1989), Park (1989), Tutty (1992) and Tutty & Pedley (1993, 1994). Unsteady 
flows in general, and pulsating flows in particular, exhibit an exceptionally large 
variety of flow structures that strongly depend on the governing parameters, such as 
the Reynolds and Strouhal numbers. Of special interest are the vortical structures that 
were found to develop in non-uniform channels. The swirling motion of the vortices 
significantly alters the characteristics of derived quantities, such as heat transfer and 
mixing rates. Thus, the identification of possible flow structures in pulsating flows 
and their dependence on the governing parameters is of importance to fundamental 
and applied research. 

In the present study, we focus on incompressible viscous flows in two-dimensional 
constricted channels. Even cases with steady entrance flow may exhibit complex flow 
patterns, Armaly et al. (1983). Depending on the geometry and flow conditions, 
several separation eddies may be generated behind the constriction, and at Reynolds 
numbers of 0(103), the flow becomes unsteady and vortices are shed periodically. 
Moving vortices are found at substantially lower Reynolds numbers (0(102)), if a 
pulsating flow is imposed by an oscillating indentation (Pedley & Stephanoff 1985; 
Ralph & Pedley 1988, 1989) or by pulsating or oscillating incoming flow (Sobey 1985; 
Park 1989; Tutty 1992; Tutty & Pedley 1993). The moving vortices at low Reynolds 
numbers owe their existence to stable flow processes, in contrast to vortex shedding 
that acts at considerably higher Reynolds numbers. A summary of several relevant 
studies is given in table 1, where Re and S t  refer to the Reynolds and Strouhal 
numbers, respectively. 



A
ut

ho
rs

 
G

eo
m

et
ry

 

Pe
dl

ey
 &

 S
te

ph
an

of
f 

O
sc

ill
at

in
g 

(1
98

5)
. E

xp
er

im
en

ta
l. 

in
de

nt
at

io
n 

R
al

ph
 &

 P
ed

le
y 

(1
98

8,
 

O
sc

ill
at

in
g 

19
89

). 
N

um
er

ic
al

. 
in

de
nt

at
io

n 

So
be

y 
(1

98
5)

. 
E

xp
er

im
en

ta
l 

A
sy

m
m

et
ri

c 
&

 n
um

er
ic

al
. 

&
 s

ym
m

et
ri

c 

R
al

ph
 (

19
86

). 
N

um
er

ic
al

 
Si

nu
so

id
al

 
&

 e
xp

er
im

en
ta

l. 
(r

ig
id

) 
w

al
ls

, 
sy

m
m

et
ri

c 

T
ut

ty
 (

19
92

). 
N

um
er

ic
al

. 
H

al
f-

ci
rc

ul
ar

 
co

ns
tr

ic
tio

n 

T
ut

ty
 &

 P
ed

le
y 

(1
99

3)
. 

St
ep

pe
d 

N
um

er
ic

al
. 

ch
an

ne
l 

Pa
rk

 (
19

89
). 

E
xp

er
im

en
ta

l. 
C

ir
cu

la
r-

ar
c 

co
ns

tr
ic

tio
n 

t B
as

ed
 o

n 
th

e 
m

ea
n 

ve
lo

ci
ty

 

O
nc

om
in

g 
flo

w
 

St
ea

dy
 

St
ea

dy
 

St
ea

dy
 o

r 
os

ci
lla

tin
g 

O
sc

ill
at

in
g 

Si
nu

so
id

al
 

+
m

ea
n,

 
ph

ys
io

lo
gi

ca
l 

O
sc

ill
at

in
g 

Pu
ls

at
in

g 
(2

.3
) 

R
e 

12
60

 >
 R

e 
>

 3
60

 

50
7,

 6
00

,6
70

 

50
0 
>

 R
e 

>
 5 

30
0 
>

 R
e 

>
 5

0 

50
0,

75
0 

25
0,

 5
00

,7
50

 

35
0>

R
e>

 1
20

7 

S
t 

0.
07

7 
>

 S
t 
>

 0.
00

52
 

0.
01

9,
 0

.0
37

, 0
.0

57
 

0.
24

 >
 S

t 
>

 0
.0

01
2 

0.
08

 >
 S

t >
 0.

00
5 

0.
02

4,
 0

.0
48

 

0.
00

4,
 0

.0
06

, 0
.0

10
 

0.
55

 >
 S

t 
>

 0
.1

97
 

M
ai

n 
fi

nd
in

gs
 

V
or

te
x 

w
av

es
 g

en
er

at
ed

 b
y 

in
vi

sc
id

 m
ec

ha
ni

sm
. 

In
du

ce
 e

dd
ie

s 
th

at
 m

ay
 d

ou
bl

e.
 

V
er

ifi
ed

 
ex

pe
ri

m
en

ta
l 

re
su

lts
 

of
 

Pe
dl

ey
 

&
 

St
ep

ha
no

ff
. 

V
or

te
x 

w
av

es
 w

er
e 

fo
un

d 
in

 
al

l 
ca

se
s.

 
Id

en
tif

ie
d 

vi
sc

id
 

an
d 

in
vi

sc
id

 
co

nt
ri

- 
bu

tio
ns

. 
A

sy
m

m
et

ri
c 

ch
an

ne
ls

: 
vo

rt
ex

 w
av

es
, s

ta
ti

on
ar

y 
vo

rt
ic

es
. 

Sy
m

m
et

ri
c 

ch
an

ne
ls

: 
vo

rt
ex

 s
he

dd
in

g,
 

m
ov

in
g 

vo
rt

ic
es

. 
Fl

ow
 i

s 
no

t 
se

ns
iti

ve
 t

o 
th

e 
sh

ap
e 

of
 t

he
 c

on
st

ri
ct

io
n 

(f
or

 s
im

ila
r 

si
ze

). 
T

im
e 

as
ym

m
et

ry
 f

or
 h

ig
h 

S
t.

 
T

yp
es

 o
f 

flo
w

s 
% 

w
er

e 
m

ap
pe

d 
in

 t
he

 (
R

e,
 S

t)
 p

la
ne

. 
!a
 

2 m 
S

tr
on

g 
vo

rt
ex

 w
av

es
 e

ve
n 

fo
r s

m
al

l S
t,

 in
cr

ea
se

s 
3
 

in
 s

tr
en

gt
h 

w
ith

 S
t 

an
d 

R
e.

 W
av

el
en

gt
h 

in
de

- 
E

 
pe

nd
en

t 
of

 R
e,

 i
nv

er
se

ly
 p

ro
po

rt
io

na
l 

to
 S

t.
 

W
al

l 
sh

ea
r 

si
gn

if
ic

an
tly

 l
ar

ge
r 

th
an

 i
n 

st
ea

dy
 

flo
w

. 
S

tr
on

g 
vo

rt
ex

 w
av

e 
du

ri
ng

 t
he

 f
or

w
ar

d 
ph

as
e.

 
Se

co
nd

ar
y 

ef
fe

ct
s 

re
su

lt 
in

 c
om

pl
ex

 f
lo

w
 p

at
- 

te
rn

s.
 E

dd
ie

s 
w

ith
 m

or
e 

th
an

 o
ne

 c
or

e.
 

T
w

o 
tr

ai
ns

 o
f 

pr
op

ag
at

in
g 

vo
rt

ic
es

. 

T
A

B
L

E
 1.
 S

um
m

ar
y 

of
 e

xi
st

in
g 

w
or

ks
 



A numerical study of pulsating $ow behind a constriction 205 

The experiments of Pedley & Stephanoff (1985) found a wavy core flow with 
two trains of downstream propagating eddies behind an oscillating indentation. They 
showed analytically that the wave generation process is essentially inviscid, but certain 
processes related to the eddies (such as eddy doubling) are inherently viscid. Ralph 
& Pedley (1988, 1989) simulated numerically the experiments of Pedley & Stephanoff 
(1989) and obtained good agreement. Their work also clarified the role of viscosity 
in the development of eddies. 

Another way of obtaining pulsating flows is by enforcing an oscillating incoming 
flow in a channel with rigid walls. Sobey (1982) and Ralph (1986) considered 
channels with sinusoidal walls. Channels with a single constriction were studied by 
Sobey (1985), Park (1989), Tutty (1992) and Tutty & Pedley (1993). Sobey (1985) 
and Tutty & Pedley (1993) studied oscillating incoming flows with a zero mean, 
while Park (1989) and Tutty (1992) considered pulsating flows with a non-vanishing 
mean. Although the geometry and the incoming waveform were different in each 
case, vorticity waves were found in all the cases with eddies beneath the crests and 
above the troughs of the wavy core flow. Sobey (1985), Tutty (1992) and Tutty & 
Pedley (1993) found essentially stationary vortices, while Pedley & Stephanoff (1989, 
Ralph & Pedley (1988, 1989) and Park (1989) observed downstream propagating 
vortices. 

Probably the single most distinctive property of periodically forced flows is their 
strong dependence on the governing non-dimensional numbers, such as the Strouhal 
or Reynolds numbers. Table 1 shows that existing works studied laminar flows 
at intermediate Re and usually low S t .  Even at this narrow range, variations in 
the flow details could be identified. The incoming waveform and the shape of the 
constriction seem to have a less important effect on the global properties of the flow 
field. 

The aim of the present work is to study further vortex generation and propagation 
in pulsating flows behind constricted channels by extending the governing parameter 
regimes. The sensitivity of the flow to numerous variables does not allow a single 
study to be carried out that covers the entire parameter regime. Therefore, the study 
focuses on two of the most important factors: the Strouhal and Reynolds numbers. 
The Strouhal number is varied by three orders of magnitudes (12 > St > 0.01), while 
the Reynolds number is changed by almost two orders of magnitude (1500 > Re > 
45). 

The study is based on the solution of the Navier-Stokes equations using an 
existing, well-validated numerical method, see Rosenfeld, Kwak & Vinokur (1991) 
and Rosenfeld & Kwak (1991, 1993). The geometry of the constriction and the 
incoming waveform were chosen to be similar to the experimental set-up of Park 
(1989), to permit the validation of the numerical model. The details of the validation 
procedure are given in Rosenfeld (1993). The present work relies on the good 
agreement obtained to extend the parameter range and to study the flow in a detail 
not possible using experimental techniques only. 

The formulation of the problem and the numerical model are briefly described in 
$2. In the presentation of the results, first the flow details for a base case are given in 
$3 along with a discussion on the formation of the vortical flow field. The dependence 
on Re is discussed in $4 for a given St, while the effect of St is discussed in $5 for 
a fixed Re. In $6, primary and secondary flow processes that affect the vortical flow 
behind the constriction are discussed. 
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FIGURE 1. (a) The geometry of the computational domain (not to scale) and (b)  the mesh in the 
region downstream of the constriction (only every fourth mesh point is shown). 

2. Formulation and numerical model 
2.1. Geometry and mesh 

The geometry of the computational domain is sketched in figure l(a). The channel 
is composed of two straight parallel plates at a distance of h from each other (all 
length units are scaled by h). On the upper wall, a circular-arc constriction is added 
with a size of a/h  = 0.56 (other constriction sizes were checked as well, but this one 
produced the more interesting and manageable flow simulations). The upstream and 
downstream boundaries are at a distance of L, = 7 and Ld = 20 from the respective 
edges of the constriction. A mesh with 97 x 417 points in the transverse and axial 
directions, respectively, is generated by a transfinite algebraic mesh generator. A blow- 
up of the grid in the region downstream of the constriction is shown in figure l (b ) ;  
for clarity, only every fourth point is shown in each direction. 

2.2. Governing equations and boundary conditions 
The equations governing the flow of a constant-density isothermal incompressible 
fluid in a fixed control volume with face S and volume I' are the conservation of 
mass 

f dSw = 0 (2.1) 

and the Navier-Stokes equations 

udV = dS.T, &J, f ( 2 . 2 4  

where u is the velocity vector, t is the time, dV is a volume element and d S  is the 
area element vector. For Newtonian fluids the tensor T is given by 

7 = -u u - PI + v (vu + ( V U ) T )  , (2.2b) 

where I is the identity tensor, Vu is the gradient of u and ( V U ) ~  is its transpose. The 
pressure is P and v is the kinematic viscosity. 

The incoming axial velocity (or mass flow rate), U(t),  is forced to: 

(2.3) U( t )  = us, 
U(t )  = Us - Up sin(2xt/T), 

0 c t / T  6 1/2 ,  
1 / 2  c t / T  Q 1, 



A numerical study of pulsating flow behind a constriction 207 

i.e. a half-sine is superimposed on the steady flow during the second half of the cycle. 
The period is T and Us, Up are the steady and oscillating components, respectively. 
The geometry of the constriction and the incoming waveform are similar to that used 
by Park (1989) in his series of flow visualizations. The start of each cycle is at t /  T = 0 
and t / T  is the phase of the cycle. We shall also refer to a phase in the cycle according 
to the variation of the incoming flow. Thus, the steady incoming flow phase refers 
to the first half of the cycle, 1/2 > t / T  2 0, while the acceleration and deceleration 
phases refer to 3/4 > t / T  2 1/2 and 1 > t / T  > 3/4, respectively. 

At the upstream boundary, a fully developed flow between two straight plates is 
specified for the waveform given by (2.3). At the downstream boundary, Neumann- 
type conditions are given for the velocity components: &/ax = 0, where x is the 
streamwise Cartesian coordinate. On the upper and lower solid walls, the no-slip and 
no-injection conditions are specified, u = 0. 

2.3. The numerical scheme 
The laminar unsteady incompressible Navier-Stokes equations with primitive vari- 
ables are solved with a solution procedure developed by Rosenfeld et al.  (1991) and 
Rosenfeld and Kwak (1991, 1993). The formulation of the governing equations, the 
discretization procedure and the numerical solution stages are combined to yield 
an accurate and efficient solution method of complex time-dependent flows in gen- 
eralized coordinate systems. The governing equations, written in the integral form 
(2.1) and (2.21, are discretized by finite volumes. The Cartesian velocity components 
are replaced by the volume fluxes across the faces of the computational cells as the 
dependent variables, in addition to the pressure. The scheme is second-order accurate 
in space and time. The discrete equations are solved by a fractional step method with 
an approximate factorization of the momentum equations. The convergence rate of 
the Poisson equation is accelerated by a multigrid procedure. The interested reader 
may find the details of the method in the references cited above. 

2.4. Description of the cases 
In the present work, the effects of the constriction size and waveform will not be 
considered. Under these conditions two non-dimensional parameters, the Reynolds 
Re = U,h/v and Strouhal St = h/UrnT numbers govern the flow field (Urn is the 
mean velocity). The non-dimensional velocity components of the waveform were set 
to Us = 1 and Up = 1.22, yielding a mean velocity of Urn = 1.39. 

A base case, which resulted an interesting and representative flow field, was chosen 
with Re = 360 and St = 0.368. The variations in St and Re are made independently 
about the base case. The parameters of the base case are close to a case previously 
validated against the experimental results of Park (1989), see Rosenfeld (1993). A 
relatively wide range of St and Re were simulated in the present study. The Reynolds 
numbers solved for S t  = 0.368 were Re = 45,90, 180, 360,720 and 1440, while for Re 
= 360 the following Strouhal numbers were solved: S t  = 0 (steady incoming flow), 
0.011, 0.023, 0.046, 0.092, 0.184, 0.368, 0.491, 0.737, 0.982, 1.310, 1.473 and 11.787. 

2.5. Numerical details and accuracy 
The solution was started from a fully developed parabolic velocity profile and was 
marched in time until a time-periodic flow was attained in the whole region of interest. 
The number of cycles needed to establish a time-periodic solution depends mainly 
on the Strouhal number, because convection is the main mechanism of propagating 
the disturbances. For the base case 20 cycles were needed, while for St = 0.011 and 
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11.787, 3 and 400 cycles were calculated, respectively, until a graphically accurate 
periodic flow was established. All the results to be presented are for the periodic flow. 
Thus, t / T  = 0.1 and t / T  = 1.1 refer to the same phase of the cycle and t / T  = 0 
refers to the start of the cycle and not to the start of the calculations. 

The numerical method has been validated for a series of internal and external flow 
problems, e.g. Rosenfeld et al. (1991) and Rosenfeld & Kwak (1991). The numerical 
model of the channel was validated in a previous paper, Rosenfeld (1993). Very good 
agreement was obtained with the experimental results of Park (1989) for a different 
set of parameters. 

Additional mesh and time-step refinement studies were carried out in the present 
study for the base case. The wall vorticity was found to be a sensitive quantity 
for performing the tests. Figure 2(a) summarizes a mesh refinement study on the 
lower-wall vorticity for t / T  = 0.2. Four meshes with 25 x 105, 49 x 209, 97 x 417 
and 193 x 833 points were employed; ten cycles with 200 time steps per cycle were 
calculated in all the cases. The solution shows sensitivity to the mesh size, but the 
grid of 97 x 417 points seems to result in a good compromise between accuracy 
and efficiency. It should be noted that other flow variables are less mesh dependent 
and an accurate solution away from the walls is obtained for even coarser meshes. 
Nevertheless, in the present study we used the mesh of 97 x 417 points in all the 
calculations. 

A time-step refinement study for the mesh of 97 x 417 points is given in figure 2(b) 
for t / T  = 0.2. The solution shows time-step independence for N ,  > 100, where N ,  is 
the number of time steps per cycle. Therefore, 200 time steps were employed for the 
base case. For other periods, the number of time steps was changed proportionally, 
but it was never less than N ,  = 100, even for the largest Strouhal number. 

In addition, the placement of the upstream and downstream boundaries and the 
type of boundary conditions were tested. The conditions given in 52.1 and 52.2 reflect 
the values that were found not to affect the solution in the regions of interest. 

3. The base case (Re = 360, St  = 0.368) 
3.1. Steady $ow 

A case with a steady incoming flow (St = 0), referred to as the equivalent steady flow, 
was first solved. A parabolic velocity profile was specified on the upstream boundary 
with a mass rate flow equal to the mean of the pulsating case ( U ( t )  = Urn = 1.39). 
The streamlines are shown in figure 3; a steady flow is obtained with an elongated 
stationary eddy in the lee of the constriction. In the downstream part of the eddy, the 
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FIGURE 3. The streamlines of the equivalent steady flow (Re = 360, St  = 0). 
Flow is from left to right. 

.. I .. . .. . 

F'IGURE 4. The instantaneous streamlines at 10 equally spaced instants of a cycle 
(Re = 360, St = 0.368). 
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core flow streamlines have an upward slope, inducing the creation of a smaller eddy 
on the lower wall as well. At a distance of about 10 channel height units downstream 
of the constriction, the flow returns to be fully developed. 

3.2. Description of the flow 
The instantaneous streamlines of the base case (Re  = 360, St = 0.368) are shown 
in figure 4 for 10 equally spaced instants along one cycle. In the first half of the 
cycle, a vortex is observed on the upper wall in the lee of the constriction, followed 
by a series of decaying vortices downstream. On the lower wall, another series of 
vortices is observed. The vortices propagate downstream, resulting in a wavy core flow 
with decreasing lateral oscillations in the downstream direction. In the acceleration 
phase of the cycle (3/4 > t / T  > 1/2), the vortices seem to diminish rapidly, the 
streamlines straighten out and the flow in the diverging part of the constriction 
attaches to the walls. In the deceleration phase (1 > t / T  > 3/4), the vortex in the lee 
of the constriction reappears, along with the other vortices in the field that seemed 
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FIGURE 5. The vorticity field at 10 equally spaced instants of a cycle (Re = 360, S t  = 0.368). The 
increment between the contour lines is 2.5. Zero values are shown by dotted lines. 

to disappear during the acceleration phase. In the steady phase of the incoming flow, 
the vortices expand and get stronger. 

The pattern of the streamlines is very useful in analysing steady flows, yet it might 
be misleading in the case of forced unsteady flows with large amplitudes of the 
oscillating components. The large increase in the incoming velocity wrongly implied 
the disappearance of the vortices in the plots of the instantaneous streamlines, as 
figure 5 clearly exhibits. In this figure, the vorticity contour lines are given for the 
same 10 equally spaced time intervals. The transverse oscillations in the vorticity field 
remain fairly uniform over the whole cycle, in contrast to what was observed in the 
pattern of the streamlines. The difference is especially visible in the acceleration phase 
of the flow, when the instantaneous streamlines are almost parallel to the walls, while 
the vorticity field still exhibits large lateral variations. The streamlines also indicated 
the diminishing of the vortices in the acceleration phase and their reappearance in the 
deceleration phase. The vorticity field, however, reveals that the size and the strength 
of the vorticest hardly change. 

Figures 4 and 5 show that a new pair of vortices is developed in each cycle, one 
vortex near each wall. At any instant, vortices generated in previous cycles still 
coexist downstream, creating the two trains of moving vortices near the walls and the 

t Following the roll-up of the vortices (see §3.3), they can be identified by the closed, almost 
circular vorticity contour lines. The size and strength of the vortices correlate with the extent and 
magnitude of the closed vorticity contour lines. 
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wavy core flow between them. Following the notation of Park (1989), the upper- and 
lower-wall vortices are labelled by A and B, respectively (figure 4). The coexisting 
vortices are distinguished by an index that refers to the formation cycle relative to 
the present cycle n. Thus, BnU1 refers to the lower-wall vortex that was generated in 
the previous cycle, etc. 

The pulsating incoming flow leads to a very different flow than the equivalent 
steady flow, although the mean incoming velocity is equal. In the pulsating case, 
two trains of moving vortices are generated, while in the steady case two stationary 
eddies grow next to the constriction, one near each wall. Moreover, the vortices of 
the pulsating case are small in length and nearly circular in shape, while in the steady 
case the eddies have an elongated shape with a relatively small height. Obviously, the 
differences should be attributed to the pulsating nature of the incoming flow. 

The flow field of the base case raises several issues; some of them are listed below. 
What is the formation mechanism of the vortical flow field? Are the vortices created 
as a response to the core flow or vice versa? What are the roles of the forced pulsating 
flow and the geometric non-uniformity in the development of the vortical flow? How 
do the Reynolds or Strouhal numbers affect the flow field? These and other issues 
will be addressed in the rest of the paper. 

3.3. Formation of vortices 
The generation of pairs of vortices in each cycle and their propagation downstream 
was also observed experimentally by Park (1989) for a lower Reynolds number. He 
described the gross features of the flow based on the visualizations of the instantaneous 
streamlines. Yet, Park (1989) neither discussed the fine details of the flow field nor 
the formation mechanism of the vortices, probably because the resolution of the 
experimental visualizations was inadequate. Our high-resolution calculations do 
allow a detailed discussion of the vortex formation mechanism for the base case. The 
formation of the vortices in other regimes of the Strouhal number is discussed in $6.1. 

The formation region of the first pair of vortices (An and Bn) ranges from x m 11 
to x w 13, figures 4 and 5. The events that lead to the growing of a pair of vortices 
in each cycle are further depicted in figure 6, where the streaklines are shown for the 
deceleration and part of the steady incoming flow phases (note that because of the 
periodicity, t / T  = 0.2 and 1.2, for example, refer to the same phase of the cycle). 
The first instant shown is t / T  = 0.8, that is at the start of the deceleration phase. 
The vortices generated in the previous cycle (An-I and Bn-I) can still be observed 
downstream. In the expanding part of the constriction (except near the downstream 
end), the streaklines are parallel to the walls. In the middle of the deceleration phase 
( t / T  = 0.9), the increase in the lateral velocity (as was determined from the sequence 
of lateral velocity plots) displaces the streaklines away from both walls. At the end 
of the deceleration phase ( t / T  = 1) the streaklines, which represent shear layers 
(figure 5) ,  penetrate rapidly into the core. A large region of separated flow is formed 
in the lee of the constriction, but no roll-up is yet evident. These processes further 
intensify at the beginning of the steady phase and the outer parts of the streaklines 
reach the core flow ( t / T  = 1.1). The downstream parts of the streaklines turn back 
owing to the initiating of the roll-up process and by t / T  = 1.3, An and Bn are fully 
formed. 

The roll-up of An starts and completes earlier than for B,. Yet, the difference in the 
roll up time is small (less than 0.05 of the period). The vortex B n  is formed in response 
to the formation of An (see $6.1). The shear layers that create An and B n  originate 
from the throat of the constriction (see figure 5), similar to the observation of Tutty & 
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FIGURE 6. Streaklines in the formation region of the vortices (Re = 360, St  = 0.368). 

Pedley (1993), and no vorticity is entrained into the vortices from other sources during 
the formation phase. Consequently, the strength of the forming vortices is mainly 
determined by the properties of the boundary layers in the throat of the constriction. 

3.4. Propagation of the vortices 
Downstream of the formation region (x > 13), the flow field is dominated by the 
propagating vortices. The propagation (phase) speed of the vortices varies with the 
bulk flow: it is relatively small during the first half of the cycle and increases in the 
second half, along with the increase in the incoming velocity. The average propagation 
speed depends mainly on the mean velocity of the incoming flow (Vm) and is less 
dependent on the other parameters of the waveform. This conjecture was confirmed 
by a series of additional (unreported) simulations using different magnitudes of Us 
and Up (keeping the mean velocity Um unchanged), as well as for other similar 
waveforms. 
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The steady incoming flow case was solved for a range of Reynolds numbers up to 
3000. A steady flow is obtained as long as Re < 1500; for Re > 1500 the upper-wall 
shear layer becomes unstable, the eddy A breaks down and is periodically shed 
downstream. If the incoming flow is pulsating, moving vortices are generated even for 
Reynolds numbers as small as 90 (see §4), indicating that the forced time variation 
has a prominent effect on the formation mechanism. Indeed, the deceleration phase is 
responsible for amplifying the lateral velocity that carries vorticity into the core flow, 
see also Sobey (1982) and Ralph (1986). 

To obtain two staggered trains of vortices at low Reynolds numbers (i.e. stable 
flows), the deceleration of the flow should take place in a non-symmetric channel. In a 
symmetric channel, symmetric vortices are generated unless the flow becomes unstable 
and the symmetry breaks down, in agreement with Sobey (1985) who pointed out that 
the dominating mechanism in the latter case is the instability of shear layers. In the 
present study, only stable flows are considered and trains of moving vortices develop 
because of the combination of pulsating incoming flow and asymmetric geometry. 

Several previous studies found pulsating internal flow fields with a wavy core flow, 
see for example Pedley & Stephanoff (1985), Sobey (1985), Ralph & Pedley (1988, 
1989) and Tutty & Pedley (1993). The wavy core flow is usually referred to as a 
‘vortex wave’. Vortex waves were discovered by Pedley & Stephanoff (1985) for the 
flow in a channel with an oscillating indentation. They developed a weakly nonlinear 
inviscid theory that related the generation of the vortex waves to the displacement 
of the vorticity gradient in the incoming Poiseuille flow. The term vortex wave has 
since been used to describe flows that are visually similar, even if the underlying 
mechanisms are different, Tutty & Pedley (1993). 

4. Dependence on Reynolds number 
The dependence of the flow field on the Reynolds number (1500 > Re > 45) was 

studied for a constant Strouhal number of 0.368. Figure 7 shows the instantaneous 
streamlines and vorticity field at t /T= 0.2 for several Reynolds numbers. The case 
with Re = 45 is not shown because propagating vortices were not found, although 
two stationary eddies (A, and B,) did form. Even for Re as low as 90 the eddies A, 
and B, propagate downstream (as was revealed in the time-sequence plots). Yet, at 
this low Re the vortices decay rapidly owing to enhanced viscosity and A,-1 and B,-1 
survive for only a short portion of the cycle. In the case of Re = 180, two coexisting 
pairs can be observed during the entire cycle. The vortices get stronger and survive 
for a larger number of cycles as the Reynolds number increases, along with reduced 
damping of the transverse oscillations. Even at the highest Reynolds number shown 
(Re = 1440), instabilities are not detected and the deterministic events leading to the 
formation of A, and B, are similar to the low Reynolds number cases. 

The formation region of the vortices moves upstream with the increase in the 
Reynolds number. The larger vorticity generated on the walls and the smaller 
retarding effects of the viscosity allow the roll-up to take place closer to the wall and 
at a more upstream section. The stronger vorticity generated near the walls is also 
responsible for the intensification of the vortices as the Reynolds number increases. 
Yet, time-sequence plots (not shown) reveal that the roll-up time is independent of 
the Reynolds number. This should not be surprising, because the vortex formation 
is dominated by the time variation of the forcing flow (through the increase of the 
lateral velocity in the deceleration phase). The waveform of the incoming velocity 
has not been changed and therefore the timing of the flow events should not vary 
significantly. 
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RGURE 7. Dependence on Re (t/T = 0.2, St = 0.368): (a) the instantaneous streamlines and (b )  
the vorticity field. The increment between the vorticity contour lines is 5. Zero values are shown by 
dotted lines. 

Figure 8 plots the axial location (x,) of the B-vortex centre as a function of the 
Reynolds number. The location of the vortex centre was estimated from the time- 
sequence plots of the vorticity field (such as figure 5) .  The vortex B is followed in time 
as it moves downstream, rather than distinguishing between the vortices according 
to the cycle of formation. Three full cycles are shown, starting from t /T= 0 up to 
t/T=3. 

The axial position of the vortex centre at a given instance is shifted upstream as the 
Reynolds number increases, as was previously noted. However, the propagation speed 
(the slope of the lines) is independent of Reynolds number. Moreover, the variations 
in the propagation speed closely follow the variations of the incoming flow. In the 
steady flow phase, the propagation speed is constant, while during the acceleration 
and deceleration of the flow, it varies in phase with the incoming flow velocity. The 
Fourier decomposition of the axial velocity component revealed that the phase angles 
of the harmonics are locked to the incoming flow for all the Re tested, resulting in 
the direct relationship between the driving flow and the propagation speed of the 
vortices. 

Figure 8 also presents the experimental results of Park (1989) for a similar geometry 
and St but Re = 180 (using our normalizations). The agreement in the location of B, 
is very good. The agreement in BnF1 is less favourable, although still satisfactory con- 
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FIGURE 8. The dependence of the B-vortex centre location on the Reynolds number ( S t  = 0.368), 

including experimental results of Park (1989). 

sidering the difficulties in extracting the centre of diffused vortices from experimental 
visualizations. 

5. Dependence on Strouhal number 
The effect of Strouhal number (12 > St > 0.01) was studied for a constant Reynolds 

number of Re = 360 by changing the frequency of the incoming flow. The pattern 
of the flow field was found to be more sensitive to the Strouhal number than to the 
Reynolds number. Five different regimes with distinct flow properties were identified 
according to the Strouhal number: (i) very low-St regime (0.02 > S t ) ,  (ii) low-St 
regime (0.1 > S t  > 0.02), (iii) intermediate43 regime (0.75 > S t  > O.l), (iv) high-St 
regime (2 > St > 0.75) and (v) very high-St regime ( S t  > 2). 

The dependence of the vorticity field on St is given in figure 9 for t /T= 0.2 (St = 0 
is the equivalent steady flow). For very low St (St < 0.02), the flow is approximately 
quasi-steady in the sense that the mean flow is identical to the equivalent steady flow. 
In the second half of the cycle the flow varies with time, while in the first half it is 
essentially steady. An elongated stationary eddy is found to the lee of the constriction 
during the whole cycle, but a B eddy is generated only in the second half of the cycle 
(and thus it cannot be observed in figure 9). A wavy core flow is formed only for a 
short time (1  > t/T > 0.9), when two additional eddies are generated downstream. 
The weak deceleration rate does not produce strong enough lateral velocity to carry 
substantial vorticity into the core, preventing the generation of vortices (although 
eddies with reversed flow do exist). 

In the low-St regime (0.1 > St > 0.02), the stronger deceleration rate leads to the 
creation of well-defined vortices with a wavy core flow in the entire cycle. In the 
smallest St  shown in this regime (St = 0.023), several elongated eddies are generated 
in the deceleration phase. Weak vortices develop at the downstream end of the eddies, 
but no roll-up of shear layers is observed. The situation is very different for S t  = 0.046 
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FIGURE 9. Dependence of the vorticity field on St ( t / T  = 0.2, Re = 360). Note that a particular 
phase of the cycle corresponds to a different absolute time for each St, because of the different 
period. The increment between the vorticity contour lines is 2.5. Zero values are shown by dotted 
lines. 

and 0.092. In these cases, several shorter eddies develop and a vigorous wavy flow 
dominates the core for most of the cycle. Several vortices are generated in each cycle, 
in contrast to the base case, where only one pair of vortices is created per cycle ($3.3). 
The number of vortices decreases with the increase in St.  Strong vortices develop at 
the downstream end of the eddies through the roll-up of shear layers originating from 
the upstream boundary layer. Secondary vortices may grow at the upstream part of 
the eddies (96.2). 

The intermediate-St regime (0.75 > S t  > 0.1) includes the base case ( S t  = 0.368) that 
has already been described in detail ($3). At the low end of the regime ( S t  = 0.184), 
only two pairs of vortices are created in each cycle. Vortices generated in the previous 
cycle can still be noticed downstream (although they are significantly weaker). For 
St > 0.25, only one pair of vortices is created in each cycle, while vortices generated in 
previous cycles are found downstream. The two trains of vortices, one near each wall, 
and the wavy core flow are characteristic to this regime. As S t  further increases, the 
vortices get stronger and shorter in length, the wavelength of the core flow decreases 
and the lateral oscillations are more vigorous. Although only one pair of vortices is 
created in each cycle, several cycles pass before the vortices fully develop at the high 
end of the regime ( S t  = 0.737). 
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In the high-St regime (2 > St > 0.75), the flow field is distinguished by the 
diminishing vortices. The vorticity field in the core flow approaches that of the 
equivalent steady flow case modulated by the small-wavelength flow induced by the 
vortices. In the very high-St regime (St > 2), no vortices are created and the vorticity 
field is steady, except in very thin Stokes layers near the walls. In the core region 
the time derivative of the axial velocity is balanced by the pressure gradient; the 
convection and diffusion terms are negligible. 

In the low& regime, no thin boundary layer next to the wall develops, while in the 
intermediate3 regime such a layer is observed. In the first half of the cycle it consists 
of reversed flow regions beneath the vortices due to the high velocity enforced near 
the wall by the swirling motion of the vortices. In most of the second half of the 
cycle, the boundary layer flow is dominated by the large vorticity generated during 
the acceleration of the flow. In low-St cases, the period is long enough to diffuse away 
the excess vorticity without generating thin boundary layers. In the intermediate-St 
regime, on the other hand, the vorticity stays bound to the walls (except the vorticity 
in the shear layer emanating from the lee of the constriction) because of the shorter 
acceleration time. In the deceleration phase, a significant portion of the wall vorticity 
is advected into the core flow by the swirling motion of the vortices, $6.2. As the 
Strouhal number further increases, the vortices decrease in size and move away from 
the walls, allowing the establishment of thin Stokes layers along the whole length of 
the walls. 

Previous works were mostly limited to the very small or small& regimes, see 
table 1. In these regimes Tutty (1992) and Tutty & Pedley (1993), for example, 
found that as St increases the core flow responds more vigorously, the strength of the 
vortices increases and the wavelength depends mainly on St. Our simulations, which 
are consistent with these findings, extend the results to a wider St (and Re) regime. 

Tutty (1992) and Tutty & Pedley (1993) used the streamfunction/vorticity for- 
mulation and finite difference discretization for solving the unsteady Navier-Stokes 
equations for cases with small St, while in the present work we employ a signif- 
icantly different numerical scheme based on primitive variables and finite volume 
discretization. The agreement between the works in the global features of the flow 
field serves as an additional check on the validity of the numerical simulations. This 
validation of the numerical results is of special importance in the present case, where 
complementary experimental results do not exist. 

6. Discussion 
Several aspects of the vortical flow behind the constricted channel are elaborated 

in the present section. Special emphasis is given to describing the formation of the 
primary vortices for the various St regimes as well as to the secondary effects that 
locally modify the flow field. 

6.1. The properties and the development of the vortical $ow field 
The characteristics of the flow field were found to depend on the Strouhal number. 
Yet, the formation of vortices and their propagation downstream is common to all 
St, except for the two extremes of very high and very low St. The vortex formation 
mechanism in the low-St regime is identical to that described by Tutty & Pedley 
(1993) for the case of an oscillating flow behind a stepped channel. Hence, it will be 
only briefly reviewed here for the completeness of the description. The main emphasis 
will be on the influence of St on the flow field behind the constriction. 



218 M .  Rosenfeld 

The vortex A in the lee of the constriction is quasi-stationary; it exists during the 
whole cycle at any S t  and the role of the oscillations in the creation of A is minor. 
It is generated even in low Reynolds number flows with steady incoming velocity. 
In the deceleration phase (1 > t/T > 0.75) of the low-St regime, large lateral flow 
develops near the lower wall. Vorticity is carried away from the wall into the core, 
forming by t / T  = 0.7 an eddy farther downstream on the lower wall (as was seen 
in a detailed examination of the sequence of streamlines and vorticity field for the 
S t  = 0.046 case). The displacement of the streamlines downstream of the lower-wall 
eddy and the deceleration of the flow enhance the convection of vorticity from the 
upper wall into the core, forming a third eddy (t/T = 0.8), that in turn induces yet 
another eddy near the lower wall farther downstream ( t /T  = 0.9). This process of 
successive eddy generation continues in the steady incoming flow phase, forming a 
total of four pairs of vortices by t /T  = 1.2 (= 0.2) (only three pairs can be observed 
in the domain shown). The downstream parts of the eddies roll up into relatively 
strong vortices, while in the upstream part a secondary vortex grows in the steady 
incoming phase ($6.2). The vortices are washed away in the second half of the cycle, 
with the increase in the mass flow rate. 

The vortex formation mechanism in the low-St regime is identical to that described 
by Tutty & Pedley (1993), although the two cases differ in many details, including 
in the geometry of the constriction and in the waveform of the forcing flow. This 
indicates that the oscillation of the incoming flow is a major factor in the establishment 
of the vortical flow (together with the non-uniform channel). Supporting evidence can 
be found in the analysis of very small-St flows. In the latter case, as well as in steady 
flows, a wavy core flow does not develop for Re < 1500. Two essentially stationary 
eddies form - one long eddy in the lee of the constriction and another small eddy on 
the lower wall, figures 3 and 9. Although shear layers emanate from the throat of 
the constriction, similar to the higher-St cases, they do not roll up and do not form 
vortices. Continuous forced oscillations (of sufficient strength) seem to be necessary 
for the generation of multiple vortices in stable flows. 

The mean flow, on the other hand, does not generate vortices but plays a passive 
role of advecting them downstream. In our opinion, in the cases considered by 
Tutty & Pedley (1993) and Sobey (1982, 1985), the vortices were essentially stationary 
because the mean flow is zero. In the present case, as well as in Pedley & Stephanoff 
(1985), Ralph & Pedley (1988, 1989) and Tutty (1992), propagating vortices are found 
because the non-vanishing mean of the flow forces the whole system of vortices to 
move. 

The number of successive vortices created in each cycle depends on the period. As 
Strouhal increases (shorter period) less time remains for the repetition of the vortex 
generation mechanism and fewer vortices form downstream in the same cycle. For 
St = 0.092, for example, three pairs of vortices are generated while for S t  = 0.046 
four pairs of vortices were found. The vortex generation mechanism proposed by 
Tutty & Pedley (1993) predicts a phase lag in the development and roll-up of the 
successive vortices because of the convective mechanism. The more downstream a 
vortex is, the later in the cycle it is created, it is less developed and the wavelength of 
the core flow decreases. All these predictions for low St were found to hold true in 
the present simulations as well. 

In the intermediate& regime, the stronger deceleration rate causes the roll-up of 
A, closer to the constriction and the subsequent creation of B, a small distance 
downstream by the same mechanism as that in the low-St regime. The difference 
between the roll-up time of A, and B, is small, so that they seem to be created 
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simultaneously. The vortices are almost circular in shape, in contrast to the small-St 
regime that was characterized by elongated eddies. The shorter period does not 
leave enough time to create additional vortices in the same cycle for St > 0.25. 
In the acceleration phase the vortices are carried downstream, but because of the 
shorter time involved they are not washed away from the region shown. Thus, at 
every instant several pairs of vortices can be observed. Each pair is created in a 
different cycle, rather than in the same cycle as in the low-St regime. This is a major 
difference with previous studies, except that of Park (1989). Most existing studies 
considered low-St flows and therefore the multiple vortices were all created in the 
same cycle. 

In the high-St regime the size of the vortices decreases with S t  because A, does 
not have enough time to fully form before it is carried away and another vortex is 
formed in the next cycle. The smaller A, induces an even weaker B, vortex. Also, 
the shear layer emanating from the constriction rolls up at a shorter distance from 
the constriction as St increases. In the intermediate-St regime, B, had its maximal 
strength and size immediately after it was formed, while for high St ,  B, continues to 
grow in the next few cycles. In the case of S t  = 0.982, for example, approximately 
four cycles are required until B fully forms (figure 9). As St increases even more, 
vortices do not form because the flow field cannot accommodate to the rapid changes 
in the forcing flow, inhibiting the roll-up of shear layers. For St >> 1, the vorticity 
field in the core is steady because St ao/at  >> -wVw + 1/ReV2w (o is the vorticity) 
and thus a w l a t  = 0. 

For all Strouhal numbers, except near the two ends of the regime, a wavy core flow 
is found. For S t  < 0.15 the wavy core flow is recreated in each cycle by the successive 
vortex generation mechanism without residual vortices from the previous cycle, Tutty 
& Pedley (1993). The wavefront (group) velocity is larger than the propagation (phase) 
velocity of the vortices and the wavelength decreases in the downstream direction. 
For S t  > 0.25 only one pair of vortices is generated in each cycle and consequently the 
wavelength is equal to the distance between the adjacent vortices. Contrary to small 
Strouhal number flows, the wavelength does not vary in the downstream direction. 

The generation of vortices and the development of the core flow are strongly 
coupled in the low-St regime owing to the successive vortex generation mechanism. In 
the intermediate- and high-St regimes, however, this mechanism acts for the creation 
of the first pair of vortices only. From then on, the propagation of the vortices 
dominates the flow field and creates the wavy core flow. This is yet another major 
difference with most other numerical and theoretical studies. 

The number of vortex pairs and hence the wavelength, depends on S t  in all the 
regimes. Increasing S t  decreases the wavelength, similar to the finding of Tutty & 
Pedley (1993) for low St. For intermediate and high S t ,  the number of coexisting 
vortices increases with S t ,  while for low S t  the number of vortices decreases with S t .  
Thus, there is a local minimum in the number of coexisting vortices. In the present 
study, the minimum is found at S t  x. 0.18, figure 9. 

Although viscosity is responsible for generating vorticity, the role of viscosity is less 
important than the role of vortex dynamics in determining the global vortical flow 
pattern. Convection is responsible for carrying vorticity into the core flow through 
concentrated shear layers and their subsequent roll-up into vortices. Global features, 
such as the wavelength, propagation speed and the interactions between the primary 
vortices are essentially inviscid. This is especially true for intermediate St, where the 
flow is dominated by the propagating vortices. The viscosity, however, determines 
the strength of the shear layers and consequently the strength of the vortices. It also 
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affects the location of the formation region and to some extent secondary effects such 
as vorticity cancellation ($6.2). 

Propagating wave trains can be also created by inviscid perturbations, as was 
found for the case of an oscillating indentation (Pedley & Stephanoff 1985; Ralph & 
Pedley 1988, 1989) or for a rigid expanding channel with an oscillating incoming flow, 
(Tutty & Pedley 1994). These waves can be viewed as the inviscid limit of Tollmien- 
Schlichting waves generated deterministically, (Tutty & Pedley 1994). This inviscid 
wave generation mechanism is dominant in low-St cases with small constriction sizes, 
where concentrated shear layers do not develop. However, for high St as well as for 
cases where strong shear layers are generated (as in the present case as a result of 
the large constriction size), the theory of Tutty & Pedley (1994) cannot be expected 
to yield an accurate description of the flow field. Strong nonlinear vortex dynamics 
governs the flow field in this case, see also Tutty & Pedley (1993). 

6.2. Secondary efSects 
The generation of the primary system of vortices was elaborated in the previous 
section. The non-uniform geometry and the pulsating forcing flow were found to play 
the major role in the establishment of the vortical flow behind the constriction. This 
vortex system might be further modified in certain regimes of St and Re by secondary 
effects. Three secondary effects are discussed here: the evolution of secondary vortices 
upstream of the primary vortices, vorticity cancellation that reduces the strength 
of the vortices and the opposite mechanism of vorticity feeding that strengthen the 
vortices. In contrast to the primary flow phenomena, the secondary effects are local 
processes. The incoming waveform or the constriction size are less dominant in their 
evolution than local flow structures. 

The first phenomenon of the evolution of secondary vortices was described by 
Tutty & Pedley (1993) for low-St cases. The long period of small Strouhal flows not 
only allows the generation of several primary vortices in each cycle, but also leads 
to the development of secondary vortices, see for example figure 9 (St  = 0.046) and 
figure 10. The latter figure zooms in to the region of the most upstream primary B 
eddy for the case of St = 0.046 at t / T  = 0. The secondary vortex in the upstream 
part of each primary vortex is created by the roll-up of two shear layers, figure 10. 
One shear layer originates from the wall upstream of the vortex (the same shear layer 
generated the main vortex as well). The second shear layer is pulled from the core 
by the swirling motion of the contra-rotating eddy D created near the wall by the 
primary vortex (figure 10). The secondary vortex rolls up by t /T=  0.2 (figure 9), but 
exists for only a short time (by t /T=  0.3 it disappears). The creation of secondary 
vortices is limited to the low-St regime. As St increases, less time remains for the 
completion of the roll-up of the secondary vortex before all the vortices are washed 
away. For St > 0.2, secondary vortices are not formed at all. 

The larger mass flow rate inhibits the vortices from growing to the full height of 
the channel, in contrast to the findings of Tutty & Pedley (1993). In the latter case, 
the secondary vortex was generated during the deceleration, close to the instant of 
vanishing mass flow rate. In the present case, the same mechanism acts during the 
steady incoming flow phase, indicating that local vortex dynamics is responsible for 
the generation of the secondary vortex, rather than the time variation of the driving 
flow. 

The rotational motion of the vortices drags counter-vorticity from the wall beneath 
the upstream part of the vortices into the core flow, see for example vortex D in 
figure 10. The counter-vorticity augments vorticity cancellation and thus the self- 
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FIGURE 10. The development of the secondary vortex ( t /T= 0, Re = 360, St = 0.046). The 
increment between the vorticity contour lines is 1. Zero values are shown by dotted lines. 

FIGURE 11. Feeding of vorticity (Re = 360, St = 0.368): (a)  vorticity field, ( b )  streaklines. The 
increment between the vorticity contour lines is 2.5. Zero values are shown by dotted lines. 

destruction of the vortices. Significant vorticity cancellation is observed in the low- 
and especially intermediate-St regimes because the vortices are strong enough to 
extract significant counter-vorticity from the wall. In the high-St regime, the vortices 
are not only weaker, but are displaced away from the walls and therefore vorticity 
cancellation is negligible. 

In the intermediate3 regime, the secondary effects may modify the vortical flow in 
the propagation region. The decay of the vortices by vorticity cancellation might be 
counterbalanced by vortex strengthening through the feeding of same-sign vorticity 
from the wall into existing vortices. The relatively strong swirling motion of B, in the 
intermediate-% regime and its O( 1) size pull a shear layer of counter-vorticity from 
the upper wall as well, upstream of A,-l, see figures 5 and 11. Figure 11 gives for 
the base case the vorticity field and the streaklines in the region 18 > x > 13 of the 
channel (the downstream edge of the constriction is at x = 11.7). The streaklines are 
released from several points near the upstream wall only to concentrate on the flow 
structures of interest. 

The shear layer C produced by B starts to develop in the acceleration phase of the 
cycle, when large amount of vorticity is generated on the walls. It extends away from 
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FIGURE 12. Feeding of vorticity with vortex coalescence (Re = 1440, St = 0.368): (a) vorticity, 
(b)  streaklines. Zero values are shown by 
dotted lines. 

The increment between the contour lines is 2.5. 

the wall during the deceleration phase (see t / T  = 0.8). In the initial phase of the 
steady incoming velocity it reaches the core flow and by t / T  = 0.2 it is entrained into 
the core of An-2 (the indices of the vortices are shifted by 1 because the next cycle has 
started). The vorticity originating from the shear layer C keeps its separate identity in 
the vortex core until the end of the cycle, generating separate closed vorticity contour 
lines in the core of An-2. However, the streaklines reveal that the vortex has only one 
core. The vorticity included in the shear layer has the same sign as that of An-2 and 
therefore the feeding of vorticity increases the overall strength of An-*, as is clearly 
observed in the later phases of the cycle (figures 5 and 11). Vortex feeding (though of 
reduced strength) is found for the farther downstream A vortices, as well as for the 
B vortices. 

Viscosity has a more pronounced influence on the local secondary effects than on 
the global flow structures. Consequently, the details of vorticity feeding depend on the 
Reynolds number. As the Reynolds number increases, stronger shear layers develop 
and they may roll up before they are captured by the core of existing vortices. Such 
a case is shown in figure 12 which presents the vorticity field and the streaklines for 
Re = 1440 and St = 0.368 (18 > x > 13). By t / T  = 0, a shear layer is created 
upstream of An-2, as in the lower-Re case. However, this shear layer is significantly 
stronger and by t /T=  0.2 it rolls up into a separate vortex Cn-2. Cn-2 expands and 
moves away from the wall, while accelerating its downstream speed. By t / T =  0.4, 
C,-z catches up with An-2 and the two vortices roll one around the other, maintaining 
their distinct cores and gradually coalescing into a single core vortex (An-3) by t /T=  
1.4 (i.e. in the next cycle). In this case as well, the net effect is the augmentation 
of the A vortices, although the mechanism is more complex than the direct feeding 
mechanism found for the lower-Re cases. 

Both vorticity cancellation and vortex feeding are a result of the interaction between 
existing vortices and the walls. While vorticity cancellation can be obtained in external 
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flows as well (Doligalski & Walker 1984), vortex feeding by the present mechanism is 
possible only in internal flows, provided the size of the vortices is of the same order 
as the height of the channel. 

In the high-St regime, the structure of the vortical flow behind the constriction is 
considerably simpler because the secondary effects are negligible, figure 9. Moreover, 
the vortices do not interact with each other or with the walls because of the short 
period. Consequently, the vortices propagate downstream almost intact, apart from 
the changes in size due to the continuation of the roll-up process in the next few 
cycles. Their strengths decay slowly due to diffusion, but are almost unaffected by 
vorticity cancellation or by feeding of vorticity. 
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